- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Helmig, Detlev (2)
-
Alwe, Hariprasad D (1)
-
Angot, Hélène (1)
-
Archer, Stephen D. (1)
-
Bariteau, Ludovic (1)
-
Barten, Johannes G.M. (1)
-
Beck, Ivo (1)
-
Bertram, Timothy H (1)
-
Blomquist, Byron W. (1)
-
Boyer, Matthew (1)
-
Cleary, Patricia A (1)
-
Desai, Ankur R (1)
-
Farmer, Delphine K (1)
-
Ganzeveld, Laurens N (1)
-
Ganzeveld, Laurens N. (1)
-
Howard, Dean (1)
-
Hueber, Jacques (1)
-
Jacobi, Hans-Werner (1)
-
Jokinen, Tuija (1)
-
Kavassalis, Sarah C (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Dry deposition is the second largest tropospheric ozone (O3) sink and occurs through stomatal and nonstomatal pathways. Current O3uptake predictions are limited by the simplistic big‐leaf schemes commonly used in chemical transport models (CTMs) to parameterize deposition. Such schemes fail to reproduce observed O3fluxes over terrestrial ecosystems, highlighting the need for more realistic treatment of surface‐atmosphere exchange in CTMs. We address this need by linking a resolved canopy model (1D Multi‐Layer Canopy CHemistry and Exchange Model, MLC‐CHEM) to the GEOS‐Chem CTM and use this new framework to simulate O3fluxes over three north temperate forests. We compare results with in situ measurements from four field studies and with standalone, observationally constrained MLC‐CHEM runs to test current knowledge of O3deposition and its drivers. We show that GEOS‐Chem overpredicts observed O3fluxes across all four studies by up to 2×, whereas the resolved‐canopy models capture observed diel profiles of O3deposition and in‐canopy concentrations to within 10%. Relative humidity and solar irradiance are strong O3flux drivers over these forests, and uncertainties in those fields provide the largest remaining source of model deposition biases. Flux partitioning analysis shows that: (a) nonstomatal loss accounts for 60% of O3deposition on average; (b) in‐canopy chemistry makes only a small contribution to total O3fluxes; and (c) the CTM big‐leaf treatment overestimates O3‐driven stomatal loss and plant phytotoxicity in these temperate forests by up to 7×. Results motivate the application of fully online vertically explicit canopy schemes in CTMs for improved O3predictions.more » « less
-
Barten, Johannes G.M.; Ganzeveld, Laurens N.; Steeneveld, Gert-Jan; Blomquist, Byron W.; Angot, Hélène; Archer, Stephen D.; Bariteau, Ludovic; Beck, Ivo; Boyer, Matthew; von der Gathen, Peter; et al (, Elementa: Science of the Anthropocene)Dry deposition to the surface is one of the main removal pathways of tropospheric ozone (O3). We quantified for the first time the impact of O3 deposition to the Arctic sea ice on the planetary boundary layer (PBL) O3 concentration and budget using year-round flux and concentration observations from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) campaign and simulations with a single-column atmospheric chemistry and meteorological model (SCM). Based on eddy-covariance O3 surface flux observations, we find a median surface resistance on the order of 20,000 s m−1, resulting in a dry deposition velocity of approximately 0.005 cm s−1. This surface resistance is up to an order of magnitude larger than traditionally used values in many atmospheric chemistry and transport models. The SCM is able to accurately represent the yearly cycle, with maxima above 40 ppb in the winter and minima around 15 ppb at the end of summer. However, the observed springtime ozone depletion events are not captured by the SCM. In winter, the modelled PBL O3 budget is governed by dry deposition at the surface mostly compensated by downward turbulent transport of O3 towards the surface. Advection, which is accounted for implicitly by nudging to reanalysis data, poses a substantial, mostly negative, contribution to the simulated PBL O3 budget in summer. During episodes with low wind speed (<5 m s−1) and shallow PBL (<50 m), the 7-day mean dry deposition removal rate can reach up to 1.0 ppb h−1. Our study highlights the importance of an accurate description of dry deposition to Arctic sea ice in models to quantify the current and future O3 sink in the Arctic, impacting the tropospheric O3 budget, which has been modified in the last century largely due to anthropogenic activities.more » « less
An official website of the United States government
